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Lower and Upper Bound Calculations on the
Capacitance of Multiconductor Printed

Transmission Line Using the
Spectral-Domain Approach

and Variational Method

ANDRZEJ SAWICKI AND KRZYSZTOF SACHSE

Abstract —A unified spectral-domain method is developed for accurate

evaluation of the parameters of single and coupled microstripline-type

structures containing a number of additional conducting strips with induced

and/or zero potentials, located on several interfaces of dielectric layers.

The Green’s function technique in the spectral domain and the superposi-

tion principle for solutions of simple Diricfdet’s problems are applied for

the first step of the analysis in which a set of afgebraic equations is to be

derived. Extreme values of two variational functional are found for

estimation of the upper and lower bounds on the line capacitance. Specific

computations, carried out for new coupled coplanar lines with additional

tuning conductive septums, illustrate the vafidity and efficiency of the

presented method. It has been shown that eqrrafization of the even- and

odd-mode phase velocities can be achieved in this structure.

I. INTRODUCTION

T HE SPECTRAL-DOMAIN method is commonly used

for analyzing the printed line structures. The quasi-

TEM approach has been applied to structures with conduc-

tors placed either at one [1], [2] or at several [3], [4]

interfaces between dielectric layers. However, to date, only

the lower bound on capacitance of lines such as those

above has been obtained by this technique as a result of

using the Green’s functions in the Fourier transform do-

main and under assumption of the charge density distribu-

tions on conducting strips expressed in terms of basis

functions [1]–[4]. Araki and Naito [5] and Sachse and

Sawicki [6], dealing with the potential distribution at the

interface with conductors, have calculated the upper bound

on capacitance for lines with conductors located only on

one interface, i.e., for microstrip and coplanar lines.

There is no published spectral-domain method for a

two-sided estimation on capacitance of the line composed
of a number of conducting strips located on several inter-

faces of dielectric layers. In this paper, a generalized for-

mulation of the quasi-TEM spectral-domain method is

described to complete that deficiency. This formulation

leads to various sets of algebraic equations giving the
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relations between the Fourier transforms of potential and

charge density distributions at every interface with con-

ducting strips. These sets of equations are found easily and

interpreted formally solving simple Dirichlet boundary

problems by means of Green’s function technique in the

spectral domain. It is shown that any form of derived

equations can be used to compute the line capacitance by

applying the Galerkin’s method and Parseval’s identity.

Two specific forms of these equations are utilized for

construction of two functional, extreme values of which

allow one to estimate the lower and upper bounds on the

capacitance.

Some numerical results are presented for the new cou-
pled coplanar lines with additional tuning conductive sep-

tums introduced on the bottom side of the substrate.

II. ANALYSIS

A. Formulation

Fig. 1 shows the cross section of the single or coupled

printed transmission lines composed of n dielectric layers

and N (N< n) interfaces with conducting strips. It is

helpful to distinguish the so-called main interface y = h.~

on which the main strips of the line are placed (single or

coupled). The conductors located on the auxiliary inter-

faces, y=h C1, hC2,. ““, hCN, y # h .M, are assumed to have

induced or zero potentials. To simplify the analysis, sym-

metry of the structure with respect to the y axis is also

assumed.

The above assumptions do not restrict the general valid-
ity of the presented method, but permit one to analyze in a

straightforward manner the most commonly used transmis-

sion-line structures in which both the tuning septums [3],

[4], [7] or induced potential conductors [8], [9] are em-

ployed. This method can be adopted easily for analyzing a

number of microstrip-type structures with several main

interfaces, as well as for the ones without structural sym-

metry.

In order to compute the capacitance of the line shown in

Fig. 1, one needs to solve Laplace’s equation in the right-
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Fig. 1. The cross section of stripline containing n dielectric layers and

N interfaces with conductors.

hand half cross section subject to appropriate boundary

conditions. It is convenient to introduce the discrete Four-

ier transform of the potential

where, for the even mode, k:) = [(2m – I)/L] n, and, for

the odd mode, k$) = (2m/L)r, m =1, 2,”0 “ . Using (l),

the partial differential equation transforms to an ordinary

differential equation

()d’
—–k; @(k., y) =0.
dy’

(2)

Solution of (2) in the jth layer takes the form

@,(km>y) = C,(kn)sinhkny + ~j(L)coWny)

j=l,. ... ~ (3)

where Cj(k~) and Dj(km) can be derived from the
boundary conditions assumed at the interfaces with con-

ducting strips and from the continuity conditions.

It is worth stressing that, in this analysis, uniform as well

as mixed boundary conditions can be assumed alterna-

tively. In the case of uniform boundary conditions, the

charge density or potential distributions at every interface

with conducting strips are to be settled. Using mixed

boundary conditions, the charge density distributions at

some interfaces, and the potential distributions at the

others, are to be assumed. For any system of boundary

conditons, one can derive the transforms of quantities dual

to those assumed at N interfaces with conducting strips.

If at a certain interface y = h., the charge density distri-

bution is assumed, the transform of dual quantity (poten-

tial distribution) at this interface is, according to (3), equal

to

and, reciprocally, if the potential distribution is assumed as

the boundary condition at this interface, the transform of

the charge density distribution can be expressed as

~(km,h.[) =C,,+(km> Y)

y=llc, -o

%(kwy)
‘6’1+16’y

(5)

Y= L/+o

where ~(k~, y) is given by (3).

Application of (4) and (5) for each interface with con-

ductors, y=hC,, 1=1, ” 00, N, leads to the following gener-

alized N X N matrix equation:

[~@m)] = [fi(kM)][3(kH)]. (6)

The one column matrices [F(k~)] and [;(k~)] in (6) will be

further named the source and reaction vectors, respectively.

The source vector is composed of the Fourier transforms of

charge density and/or potential distributions at interfaces

with conductors. The reaction vector is created by quanti-

ties dual to those creating the source vector. The matrix

[fi(k~)] in (6) depends on the form of the source vector

and on the structure of the line.

The source vector can take two particular forms. If this

vector includes only transforms of the charge density distri-

butions, (6) can be written as follows:

[@(hJl= [C(kn)][5(k~)]. (7)

And in the dual case, if there are only transforms of the

potential distributions, one has

[F(%)]=[~(Ln)][@(km)]. (8)

Notice that in the case when the matrices [~(kw)] and

[~(k~)] are derived for the same structure of the line, the
following relationship is true:

[ti(k~)] = [~(k~)] -’. (9)

Equation (7) is already known from [4]. Equation (8) has

been obtained in [6] for the line structure with just one

interface with conductors. Equation (8), as well as its more

general form (6) (for the source vector with arbitrary

assumed elements), and also the identity (9), can be used

for more general analysis of multiconductor and multi-

layered printed transmission lines. As it will be proven in

Section I-D, the use of (7) and (8) leads to the two-sided

estimation on capacitance of the line.

B. Derivation and Interpretation of the [&kJ] Matrix

Elements

In Section II-A, elements of the matrix [fi(k~)] have

been derived using the boundary and continuity conditions

at the dielectric interfaces. However, if the number of

layers is large, that method is not efficient because of the

necessity for the analytical solution of a large system of

algebraic equations. In this instance, a more efficient origi-

nal method can be applied. In this method, elements of the

[fi(k~)] matrix are obtained by solving a number of
Dirichlet boundary problems in the spectral domain. The

method can also give a formal interpretation of the [fi(k~)]

matrix elements. To date, only the elements of matrix
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[~(lc~)] have their clear interpretation as transforms of

Green’s functions [4].

First of all, let us recall the well-known solutions for two

particular cases of the boundary problems in the space

domain. In both cases, a dielectrically nonhomogeneous

region R is considered. If this region is shielded, and

includes a set of conductors with a distribution of charge

density p(x, -y), the Dirichlet’s problem for poisson’s equa-

tion is to be solved. Solution of this problem takes the form

[10]

CP(X>Y) ‘~ P(x., Y.) G(x, Y; x.>.Y,)dC, (lo)
c,

where G(x, y; x$, y~ ) is Green’s function and C, means the

contour surrounding each conductor, If the region R is

sourceless, i.e., p(x, y) = O, and at a certain part of the

edge dR, of the subregion R, the potential distribution

~E, (x, Y) is settled, and at the rest of the R region the edge
potential is equal to zero, solution of the Dirichlet’s prob-

lem for Laplace’s equation is [10]

where ii, is the unit vector directed outside the subregion

R,, and c1 is the dielectric permittivity of the media filling

this subregion.

Consider now the region composed of a planar arrange-

ment of n dielectric layers and N interfaces with conduc-

tors (as in Fig. 1). In this case, one can employ the Fourier

transform defined by (1) to (10) and (11). Because (10) and

(11) are the convolution integrals, the following expressions

in the spectral domain can be obtained:

@(~m7Y)=F(~m>Y.)~(~m>Y3Ys) (12)

q(km, y)=–c,i%i (k~, y,) ‘G(k;; “ ‘s) (13)
3

where the quantities signed with a wave line are Fourier

transforms of the corresponding quantities in (10) and (11).

Expressions (12) and (13) swill now be used for derivation

and interpretation of the [R ( km )] matrix elements for some

specified forms of the source vector.

Let us assume in the first case the charge density distri-

butions at every interface with conductors (the source

vector is [~ ( km )]). In this case, the matrix [ G( km )] can be

found by solving the Dirichlet boundary problems for

Poisson’s equation as shown in Fig. 2 (the interfaces with

conductors are signed with dashed lines). Using (12), the

following relation betwen the Fourier transform of poten-

tial distribution at the i th interface and the transform of

the charge density distribution at the jth interface is

obtained:

@,J(k~)=~iJ(kw)Pj(k~) (14)

in which ~,, (km) is the transform of the Green’s function.

In the second case, the source vector is assumed to be

made up of the transforms of potential distributions at

every interface (the matrix [ F( km )] is to be found). This

5
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Fig. 2. Superposition of simple Dirichlet’s problems for Poisson’s equa-

tion (the source vector composed of charge density distributions at every
interface).

boundary problem can be decomposed on many simple

Dirichlet boundary problems for Laplace’s equation in

specified subregions on the edge of which the potential

functions are assumed (Fig. 3). Notice that the elements

~’~(k~) are equal to zero when 1 and k are differing more

than 1. So, [ ~(lcm )] is a tridiagonal matrix.

Elements #Jk~ ) at the main diagonal are derived from

solutions of Laplace’s equation in two subregions adjacent

to the interface y = h .1. These subregions are bounded

from the other side by the nearest interfaces with conduc-

tors. Using (13) for the mentioned subregions and then

calculating the transforms of the component of the electric

induction vector normal to the interface y = h ~, one ob-

tains the following expression for the elements ~ll(k~):

where

fd+j

v, -h.,

dielectric permittivity

.}

(15)

p= hc[

of the layers

nearest to the interface y = h.1 (for

the lower layer j = O and for the up-

per one j =1),

transforms of the Green’s functions

for the lower (j= O, y, y, < A,I), and

upper (j =1, y, y, > h .l) subregions,

unit vector along the y axis,

unit vector directed outside the subre-

gions (for j= O Z,O= iiY, for j=l

Z,l = – 7“),

normal unit vector directed outside

the conductors located on the inter-

face y=h C1 (for j=O iiO= –dY, for

j=l iil=dy).
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Fig. 3. Superposition of simple Dirichlet’s problems for Laplace’s equation (the source vector composed of potential

distributi&zs at every interface).

Elements fl,,l+l(k~), 1=1,”. “, N – 1, and ~l,l_l (km), are two problems qualitatively new as compared with those

1=2, ”.” , N, can be derived in a similar way as the ele- presented previously.aThese problems require deriting the

ments expressed by (15). There is however, a difference: ~lements fi12(k~), ltlq(k~) and, respectively, R ~l(km),
the source (potential distribution) is now settled at the R ~l(km).
interface y = h .(,+ ~, (or y = h .(l_ ~)) and reaction (charge The first problem is the Dirichlet boundary problem for

density distributio~) is to be found at the interface ,y = h .fi Poisson’s equation in which one should calculate addition-

Finally, element F[, ,+~ (km) can be expressed in the form ally the transform of the charge density distribution at the

(16)

W&-e G,,+, ( ... ) is the transform of the Green’s function

for the subregion bounded by the coordinates y = h .l and

Y = hc([+l)> and E = is = ~Y. Element FL ~-l(krn) can be
derived similarly.

Notice that the transforms of Green’s functions in (15)

and (16) are defined for simple subregions (usually com-

posed of the single- or doubl~layered dielectric media).

Tridiagonality of the matrix [F(kJ] is an advantageous

feature of this matrix because it certainly reduc~s the

complexity of calculations. Therefore, the matrix [ F( kJ]

can be used as a fundamental matrix for the two-sided

estimation of capacitance of the line (the second matrix

needed for this purpose can be easily found numerically

from (9)).

Equations (15) and (16) provide the interpretation of the

[~(k~)] elements. These elements are proportional to the

second mixed derivatives of the transforms of the Green’s

functions, defined for the particular subregions, with respect

to the coordinates y, and y.

In the case of mixed boundary conditions, the manner of

decomposition of the line cross section depends on the

form of the source vector. As an example, consider a

simple mixed boundary problem illustrated in Fig. 4. There

edge (at y = hi). For sources placed respectively at the

interfaces y = h ~ and y = h ~, one can derive, using (12),

the following identities:

k,(k)
j= 2,3. (17)

The second problem is a simple Dirichlet boundary

problem for Laplace’s equation. Using (13), one obtains

the followirig expressions for the elements fi ~l(k~ ) and

fi31(kJ:

(18)

~(k~, y, y,) in (17) and (18) is the transform of the
Green’s function defined for the subregion bounded by the

coordinates y = hl and y = h A.
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Superposition of simple Dirichlet boundary problems for the mixed source vector.

In a similar manner, one can analyze any line structure

“ sourced” with any source vector. In the presented method,

it is required to derive the transforms of the Green’s

functions for simple subregions of the line cross section. A

fundamental collection of these transforms can be derived

easily and utilized for all the cases of the source vectors to

be used.

C. The Galerkin’s Procedure

To solve matrix equation (6), an unknown vector [;(kW)]

is expanded as

~,(knl)= : Wknl), 1=1,.. *,N (19)
i=l

where c;, i = 1,. ... K1, 1=1,. -., N, are unknown coeffi-

cients. Substituting (19) into (6) and taking the inner

products of the resultant equations with S;(kW), i =

1,. ... Kl, 1=1,... , N, the following set of coupled linear

equations for C; is obtained:

[A][c]= [B] (20)

where

‘A]=[:l “’”::1‘B]=
[%1

[iv]

and (. ..,... ) means the inner product expressed as

follows :

(f(h), ~(km))= ; : f(km)~(hz) (21)
m—1

where ~(k~) and ~(k~) are transforms of functions ~(x)

and g(x).

An unknown one-column matrix [B] in (20) can be

defined by virtue of Parseval’s identity. Because the con-

ductors located on the auxiliary interfaces have induced or

zero potential, the elements of the matrix [B] assigned to

these interfaces are equal to zero. So, the matrix [B] takes

two forms that depend on the boundary conditions as-

sumed at the main interface. If, for this interface, the

element of the source vector is the transform of the charge

density distribution, one should assume the potential VM of

the main strip. Then, the elements of matrix [B] take the

form

(v piM(x) dx, 1=~, i=~,. ... K
B;= ‘MWM. M (22)

(0, 1=1,... ,N, i#M

where pz~(x ) is the i th basis function approximating the

charge density distribution on the strip WCM.

If the main element of the source vector is the transform

of the potential distribution, one should assume the value

QM of the total charge concentrated on the main strip.

Then

{

B:= ~M3Pir(X)lXaVcM>l=M, i=l,. ... KM
(23)

o, 1=1,.. . ,N, i#M

where IA(x) 1..~cMis the potential of the main strip “gen-

erated” by the i th basis function approximating the distri-

bution of the potential at the main interface.

The capacitance of the line can be calculated as a ratio

of the total charge and the potential of the main strip. So,

in the first case, the capacitance of the line equals
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where coefficients CL are solutions of the matrix equation

(20) in which the matrix [B] has been replaced by (22).

In the dual case, the capacitance of the line is

where c~ are solutions of (20) in which one should sub-

stitute (23) for the matrix [B].

D. Two-Sided Estimation on the Line Capacitance

Let us introduce the following functional:

J
L/2

where 2W~ = q~(x)p~(x) dx is the term which the
– r. /2

stationary value equals twice the energy stored in the

electric field per unit length. As it will be shown, this

functional can be applied for two-sided estimation on the

line capacitance.

Examine first the case when the potential of, the main

strip is fixed and equals V~. Functions p{(x), 1=1, 000, N,

approximating the charge density distributions on every

strip conductor, are to be searched for. Using the Parseval’s

identity for each integral standing below the summation

sign in (26) and, according to (7), replacing each transform

of the potential function by the product of ~~,( km) and

F~(k~), one obtains the function~ Fv aS fO1lOWS:

%=LJ PM(x)dx
w, M

Quite similarly, the expression for the functional F’

(assuming the total charge Q~ concentrated on the main

strip and using (8)) can be derived

F~ = QMqM(x)lx,W,M

In this case, functions ~l(x), 1 =1,”” ~, N, approximating

the potential distributions at every interface with conduc-

tors, are to be searched for.

In order to find the extrema of the functional Fv and

F~, the Ritz method can be applied. This means that

functions p[(x) and cpl(x), 1=1,”” o, N, in (27) and (28)

should be expanded in terms of basis functions expressed

as in (19), and the first derivatives of F’v and FQ with

respect to the unknown coefficients should be calculated

and equated to zero. As a result, two sets of linear alge-

braic equations just like (20) are obtained, in which indi-

vidual elements derived separately for the functional Fv

and FQ take the forms, respectively,

Ag~= (~~/(k~)P~(kw)+ ~i(k~)) (29)

{

~i= VM~ &(X) dx, l=kl
[ WCM

o, I+ikf

and

A~, = (~k,(km)tik(rtm), ti(k)) (30)

(

~i = QM~h(X)lXWLM> l=it!.?
o, l+iw.

Solutions of (20) with (29) and (30) allow for compu-

tation of the extrema values Fve, FQ, of the functional Fv

and FQ. These extrema values are equal approximately to

the energy stored per unit length in the line. Hence, the

capacitance value can be estimated from the following

formulas:

2FV,
Cve= —

v;
(31)

Q&
cQe=~” (32)

Q,

In order to define the nature of the extrema of function-

al Fv and FQ, one should calculate their second variations

and, according to [11], utilize the following properties of

the matrices [~(k~)] and [~(k~)]:

: f ~,,(k~) >0,
k=l [=1

; : ~k,(km) >0, m=l,2, ,., . (33)
k=l /=1

It can be shown that functional Fv and FQ reach their

maxima for the correct charge density and potential distri-

butions, respectively. Thus, approximate values Fve and

FQ= are smaller than the exact ones. The capacitance value

calculated from (31) is smaller, and calculated from (32) is

larger than the exact one. The average value of capacitance

c=;(cve+cQ,) (34)

estimates the exact value with an error smaller than

cQe– Cve
8==

cQe+ Cve “
(35)

Once the line capacitance C, and CO are evaluated for

nonhomogeneous (layered) and homogeneous (air-loaded)

dielectric media, the characteristic impedance ZC and the

effective dielectric constant Eeff can be obtained as follows:

Zc= :( C.CO)-l’* (36)

:6
Ceff= —

co
(37)
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where UCis the light velocity in free vacuum space. Because

of the form of (36), it is obvious that the characteristic

impedance value is bounded from the reverse side rather

than the capacitance value.

Comparing (20), (6), (7), (8), (22), and (23) to (29) and

(30), it can be noticed that using both the Galerkin’s and

Ritz’s methods, the same sets of algebraic equations are

obtained for the cases when the charge density or potential

distributions are approximated at every interface. Thus, the

capacitance values calculated from (24) and (31) and also

from (25) and (32) are equal.

If mixed boundary conditions are assumed at interfaces

with conductors, it is impossible to determine a priori from

which side the estimation of the line capacitance is taking

place. This problem is discussed in the next section.

III. NUMERICAL mSULTS

Modified coupled coplanar lines for which specific com-

putations have been carried out are shown in Fig. 5. This

structure can be useful for microwave integrated circuits

with a view to improve parameters of various passive

components. It is also compatible with the conductor-

backed coplanar line, proposed recently by Shih and Itoh

[12] for monolithic microwave integrated circuits.

In the computations, the unified system of basis func-

tions has been used. This system is based on the Chebyshev

polynomials of the first and second kinds, ~(X) and

~(x), i=O, 1, 2,””, respectively, weighed by an “edge

condition” term ~ where X is the x coordinate

normalized t~) the half of a distance on which the ap-

proximation is taking place. The system incorporates a

singular behavior of the charge density and electric-field

distributions at the conductor edges and also their nonsym-

metrical distributions.

In Fig. 6, convergence of the upper and lower bounds on

the even- and odd-mode impedances versus a number of

terms of basis functions at both interfaces is shown for two

different structural parameters.

In the first case (Fig. 6(a)), the coplanar line ground

planes had been removed so far away that our computa-

tions might be compared with the results for coupled

suspended rnicrostrip lines with tuning septums presented

by Itoh and Hebert in [3]. Some differences, especially for

the odd-mode, are visible. They result from the fact that

Itoh and Hebert used only symmetrical terms of basis

functions for approximation of the charge density distri-

bution on coupled strips, whereas the physically existing

distributions are nonsymmetrical. In our computations,

both symmetrical and nonsymmetrical terms have been

used; hence, the results are better.

Because of wide slits between the conductors in Fig. 6(a),

the potential distributions are approximated worse than

the charge density distributions, and the lower bound on

the impedance converges to the exact value more slowly

than the upper one. In Fig. 6(b), the results shown for the

dimensions of the structure chosen by this means that the

charge density distributions are approximated worse and

the upper bound converges slowly.

Fig. 5. Modified coupled coplanar lines.

The numerical results obtained for mixed boundary con-

ditions, i.e., for potential distribution settled at the ad-

ditional ground plane and charge density distributions

settled at the plane of coplanar lines, are depicted in Fig. 6

by dashed lines. Based on these results, it can be concluded

that, in the case of mixed boundary conditions, the side

from which the solution converges to the exact impedance

value is determined by the exactness of approximation of

the physical quantities at the individual interfaces. If at

some interface the charge density distribution is approxi-

mated worse than the potential distributions at the remain-

ing interfaces, the upper bound on impedance is obtained.

And inversely, if at some interface, the approximation of

the potential distribution is the worst, the lower bound on

impedance is calculated. One can ensure the best accuracy

of the computations in the cases if the charge density

distributions are approximated at the planes on which

narrow strips are located and the potential distributions at

the planes where there are wide strips and narrow slits

between them.

The “overlap” effect of some individual solutions can be

observed in Fig. 6. This effect appears when the charge

density or potential distributions are well approximated by

an applied set of basis functions and the errors caused by

the truncation of the series used in (20) dominates. A

number of harmonic terms in (20) has been fixed individu-

ally by the computer program to truncate each series with

the same error, and was not smaller than 100.

In Fig. 7, the characteristic impedances and effective

dielectric constants for even- and odd-modes versus the slit

width in the additional ground plane normalized to the slit

width in the main ground plane are shown. These char-

acteristics have been obtained by calculating the upper and

lower bounds on impedance and applying 2+6 terms of

basis functions when the charge density distributions were

aprroximated, and only 1 + 3 terms (1+2 for the odd

mode) for approximation of the potential distributions. It

was estimated that the total error caused by approximation

inaccuracy and by truncation errors does not exceed 0.5

percent. On can observe in Fig. 7 that equalization of the
even- and odd-mode effective dielectric constants can be

achieved. A very important feature of the proposed struc-

ture is that it can permit one to design microwave in-

tegrated components of higher quality (for example, high-

directivity directional couplers).

IV. CONCLUSIONS

We have presented a unified quasi-TEM spectral-domain

method which is able to estimate the lower and upper

bounds on capacitance of multilayer and multiconductor
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Fig. 6. The upper (u.) and lower (l.) bound on the even(e)- and odd(o)-
mode impedances and the results for mixed boundary conditions (m.)
versus a number ( K1, K2 ) of terms of basis functions at interfaces

Y = hl and Y = hl~ respectively. (a) %1= % ‘L %2=9.6, hz – hi= h,
(h, - h2)/h = hi/h =10.0, L/h= 20.0, a/h= 0.3, b/h= 2.7, c/h=

18.0, d/h = 6.0. (b) b/h =1.5, c/h= 2.5, d/h =1.0.

printed lines. It has been shown that the approximation of

the charge density distributions at every interface with

conductors leads to the lower bound and approximation of

the potential distributions to the upper bound. If mixed

boundary conditions are assumed, the side of estimation is

determined by exactness of the approximation of the charge

density or potential distributions at the individual inter-

faces. Choosing mixed boundary conditions, one may, in

particular cases, increase the accuracy of the capacitance

calculations.

Numerical results have been given for modified coupled

coplanar lines backed by tuning conductive septums. It has

been shown that equalization of the even- and odd-mode

propagation constants can be achieved in this structure.

The wider range of characteristics for these lines, also

including the dispersion effect, and measured results for

high-directivity couplers built using these lines, will be

published in a separate paper.
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