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Lower and Upper Bound Calculations on the
Capacitance of Multiconductor Printed
Transmission Line Using the
Spectral-Domain Approach
and Variational Method

ANDRZEJ SAWICKI aAND KRZYSZTOF SACHSE

Abstract — A unified spectral-domain method is developed for accurate
evaluation of the parameters of single and coupled microstripline-type
structures containing a number of additional conducting strips with induced
and/or zero potentials, located on several interfaces of dielectric layers.
The Green’s function technique in the spectral domain and the superposi-
tion principle for solutions of simple Dirichlet’s problems are applied for
the first step of the analysis in which a set of algebraic equations is to be
derived. Extreme values of two variational functionals are found for
estimation of the upper and lower bounds on the line capacitance. Specific
computations, carried out for new coupled coplanar lines with additional
tuning conductive septums, illustrate the validity and efficiency of the
presented method. It has been shown that equalization of the even- and
odd-mode phase velocities can be achieved in this structure.

I. INTRODUCTION

HE SPECTRAL-DOMAIN method is commonly used

for analyzing the printed line structures. The quasi-
TEM approach has been applied to structures with conduc-
tors placed either at one [1], [2] or at several [3], [4]
interfaces between dielectric layers. However, to date, only
the lower bound on capacitance of lines such as those
above has been obtained by this technique as a result of
using the Green’s functions in the Fourier transform do-
main and under assumption of the charge density distribu-
tions on conducting strips expressed in terms of basis
functions [1]-[4]. Araki and Naito [5] and Sachse and
Sawicki [6], dealing with the potential distribution at the
interface with conductors, have calculated the upper bound
on capacitance for lines with conductors located only on
one interface, i.e., for microstrip and coplanar lines.

There is no published spectral-domain method for a
two-sided estimation on capacitance of the line composed
of a number of conducting strips located on several inter-
faces of dielectric layers. In this paper, a generalized for-
mulation of the quasi-TEM spectral-domain method is
described to complete that deficiency. This formulation
leads to various sets of algebraic equations giving the
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relations between the Fourier transforms of potential and
charge density distributions at every interface with con-
ducting strips. These sets of equations are found easily and
interpreted formally solving simple Dirichlet boundary
problems by means of Green’s function technique in the
spectral domain. It is shown that any form of derived
equations can be used to compute the line capacitance by
applying the Galerkin’s method and Parseval’s identity.
Two specific forms of these equations are utilized for
construction of two functionals, extreme values of which
allow one to estimate the lower and upper bounds on the
capacitance.

Some numerical results are presented for the new cou-
pled coplanar lines with additional tuning conductive sep-
tums introduced on the bottom side of the substrate.

II. ANALYSIS

A. Formulation

Fig. 1 shows the cross section of the single or coupled
printed transmission lines composed of n dielectric layers
and N (N <n) interfaces with conducting strips. It is
helpful to distinguish the so-called main interface y =k,
on which the main strips of the line are placed (single or
coupled). The conductors located on the auxiliary inter-
faces, y=hy, hp, oy hoy, ¥ * h,y, are assumed to have
induced or zero potentials. To simplify the analysis, sym-
metry of the structure with respect to the y axis is also
assumed.

The above assumptions do not restrict the general valid-
ity of the presented method, but permit one to analyze in a
straightforward manner the most commonly used transmis-
sion-line structures in which both the tuning septums [3],
[4], [7] or induced potential conductors [8], [9] are em-
ployed. This method can be adopted easily for analyzing a
number of microstrip-type structures with several main
interfaces, as well as for the ones without structural sym-
metry.

In order to compute the capacitance of the line shown in
Fig. 1, one needs to solve Laplace’s equation in the right-
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Fig. 1. The cross section of stripline containing # dielectric layers and

N interfaces with conductors.

hand half cross section subject to appropriate boundary
conditions. It is convenient to introduce the discrete Four-
ier transform of the potential

(1)

. 4 1 cos k{x
‘P(km’y)=z_/(; q>(x,y){

sin k{?x

where, for the even mode, k{9 ={(2m —1)/L}=, and, for
the odd mode, k{9 =Q2m/L)m, m=1,2,---. Using (1),
the partial differential equation transforms to an ordinary
differential equation

d2
[ -

Solution of (2) in the jth layer takes the form
(i)j(km’y) = C‘j(km)snlhkmy + Dj(km)COShkmya
j=1,-+-,n (3)

where C(k,) and Dj(k,) can be derived from the
boundary conditions assumed at the interfaces with con-
ducting strips and from the continuity conditions.

It is worth stressing that, in this analysis, uniform as well
as mixed boundary conditions can be assumed alterna-
tively. In the case of uniform boundary conditions, the
charge density or potential distributions at every interface
with conducting strips are to be settled. Using mixed
boundary conditions, the charge density distributions at
some interfaces, and the potential distributions at the
others, are to be assumed. For any system of boundary
conditons, one can derive the transforms of quantities dual
to those assumed at N interfaces with conducting strips.

If at a certain interface y = h, the charge density distri-
bution is assumed, the transform of dual quantity (poten-
tial distribution) at this interface is, according to (3), equal
to

¢(km’hcl) = Cl(km) Sinhkmhcl + Dl(km)COShkmhcl

(4)

and, reciprocally, if the potential distribution is assumed as
the boundary condition at this interface, the transform of
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the charge density distribution can be expressed as

a ~
¢(k,s ¥)

ﬁ(kmﬂ hcl) =€cl$

y=h,—0

©)

d
€y l_(i)(km’ y)
oy = by +0
where §(k,,, y) is given by (3).
Application of (4) and (5) for each interface with con-
ductors, y=h,, I=1,-+-, N, leads to the following gener-
alized N X N matrix equation:

[7(kn) ] = [RCE)][3(K,)]. (6)
The one column matrices [§(k,,)] and [F(k,,)] in (6) will be
further named the source and reaction vectors, respectively.
The source vector is composed of the Fourier transforms of
charge density and /or potential distributions at interfaces
with conductors. The reaction vector is created by quanti-
ties dual to those creating the source vector. The matrix
[R(k,)] in (6) depends on the form of the source vector
and on the structure of the line.
The source vector can take two particular forms. If this
vector includes only transforms of the charge density distri-
butions, (6) can be written as follows:

[6 (k)] =[G (k)] 5 (K)]- (7)
And in the dual case, if there are only transforms of the
potential distributions, one has

[6(k,)] = [F(k,)][8(k,)]. (8)
Notice that in the case when the matrices [G(k,)] and
[F(k,,)] are derived for the same structure of the line, the
following relationship is true:

[G (k)] = [F(k,)] (9)
Equation (7) is already known from [4]. Equation (8) has
been obtained in [6] for the line structure with just one
interface with conductors. Equation (8), as well as its more
general form (6) (for the source vector with arbitrary
assumed elements), and also the identity (9), can be used
for more general analysis of multiconductor and multi-
layered printed transmission lines. As it will be proven in
Section I-D, the use of (7) and (8) leads to the two-sided
estimation on capacitance of the line.

B. Derivation and Interpretation of the [R(km )] Matrix
Elements

In Section II-A, elements of the matrix [i?(km)] have
been derived using the boundary and continuity conditions
at the dielectric interfaces. However, if the number of
layers is large, that method is not efficient because of the
necessity for the analytical solution of a large system of
algebraic equations. In this instance, a more efficient origi-
nal method can be applied. In this method, elements of the
[R(k,)] matrix are obtained by solving a number of
Dirichlet boundary problems in the spectral domain. The
method can also give a formal interpretation of the [R(k,,)]
matrix elements. To date, only the elements of matrix
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[G(k,,)] have their clear interpretation as transforms of
Green’s functions [4].

First of all, let us recall the well-known solutions for two
particular cases of the boundary problems in the space
domain. In both cases, a dielectrically nonhomogeneous
region R is considered. If this region is shielded, and
includes a set of conductors with a distribution of charge
density p(x, y), the Dirichlet’s problem for Poisson’s equa-
tion is to be solved. Solution of this problem takes the form
[10]

¢(x, ) =_<,6Cp(xs, ¥,)G(x, y; x,, y,)dC,  (10)

where G(x, y; x,, y,)is Green’s function and C, means the

contour surrounding each conductor. If the region R is
sourceless, i.e., p(x,y)=0, and at a certain part of the
edge dR, of the subregion R, the potential distribution
o5 (x, y) is settled, and at the rest of the R region the edge
potential is equal to zero, solution of the Dirichlet’s prob-
lem for Laplace’s equation is [10]

G (x, y; x,, ;)
dn

s

(P(x7 y)=—€zf (pEz(xs’ys) dcs (11)
aR,

where 7, is the unit vector directed outside the subregion

R, and ¢, is the dielectric permittivity of the media filling

this subregion.

Consider now the region composed of a planar arrange-
ment of n dielectric layers and N interfaces with conduc-
tors (as in Fig. 1). In this case, one can employ the Fourier
transform defined by (1) to (10) and (11). Because (10) and
(11) are the convolution integrals, the following expressions
in the spectral domain can be obtained:

¢ (ks y) = B(Kps )G (K, 7, 3;)

i i 3G (ks 7, ¥,)
(p(km’ y) == fl‘PEi(km’ ys)_—a;l-_

(12)
(13)

where the quantities signed with a wave line are Fourier
transforms of the corresponding quantities in (10) and (11).
Expressions (12) and (13) will now be used for derivation
and interpretation of the [ R(k,,)] matrix elements for some
specified forms of the source vector.

Let us assume in the first case the charge density distri-
butions at every interface with conductors (the source
vector is [p(k,,)])- In this case, the matrix [G(k,,)] can be
found by solving the Dirichlet boundary problems for
Poisson’s equation as shown in Fig. 2 (thc interfaces with
conductors are signed with dashed lines). Using (12), the
following relation betwen the Fourier transform of poten-
tial distribution at the ith interface and the transform of
the charge density distribution at the jth interface is
obtained:

s

&, (k,) =G, (k,)p(k,) (14)

in which G, ,(k,,) is the transform of the Green’s function.

In the second case, the source vector is assumed to be
made up of the transforms of potential distributions at
every interface (the matrix [F(k,,)] is to be found). This
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Fig. 2. Superposition of simple Dirichlet’s problems for Poisson’s equa-
tion (the source vector composed of charge density distributions at every
interface).

boundary problem can be decomposed on many simple
Dirichlet boundary problems for Laplace’s equation in
specified subregions on the edge of which the potential
functions are assumed (Fig. 3). Notice that the elements
F,(k,) are equal to zero when / and k are differing more
than 1. So, [ F(k,,)] is a tridiagonal matrix.

Elements F,(k,,) at the main diagonal are derived from
solutions of Laplace’s equation in two subregions adjacent
to the interface y =h . These subregions are bounded
from the other side by the nearest interfaces with conduc-
tors. Using (13) for the mentioned subregions and then
calculating the transforms of the component of the electric
induction vector normal to the interface y=h , one ob-
tains the following expression for the elements F(k,,):

1
F'Il(km) = Z €Cl+jﬁj
Jj=0

8 3G~C (km ° y’ yS)
_Ey_ _ecl+1 . (15)
6y 8nsj y. = he = n,
where
€ty dielectric permittivity of the layers

nearest to the interface y=h, (for
the lower layer j =0 and for the up-
per one j=1),

transforms of the Green’s functions
for the lower (j=0, y, y,< h,), and
upper (j=1, y, y, > h_,) subregions,

G~c[+j(km’ ya ys)

a, unit vector along the y axis,

A, unit vector directed outside the subre-
gions (for j=0 7n,,=d, for j=1
il 1T 7 Ziy )7

" normal unit vector directed outside

the conductors located on the inter-
face y=h, (for j=0r,=—a, for
j=ln,=a 3)-
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Fig. 3.

Superposition of simple Dirichlet’s problems for Laplace’s equation (the source vector composed of potential

distributidns at every interface).

Elements f’,,,ﬂ(km), I=1,---,N-1, and f‘,,,wl (k)
{=2,---,N, can be derived in a similar way as the ele-
ments expressed by (15). There is however, a difference:
the source (potential distribution) is now settled at the
interface y = h .y, (Or y =h,,_y)) and reaction (charge
density distribution) is to be found at the interface y = k..
Finally, element F; ,,, (k,,) can be expressed in the form

R,
d.—
yay

F'I.l+1(km) =€

o
cl+17

where G,;,, (---) is the transform of the Green’s function
for the subreglon bounded by the coordinates y = h,, and
y=h,y+1) and =7 =d, Element F, —1(k,,) can be
derived similarly.

Notice that the transforms of Green’s functions in (15)
and (16) are defined for simple subregions (usually com-
posed of the single- or double-layered dielectric media).
Tridiagonality of the matrix [F(k,)] is an advantageous
feature of this matrix because it certainly reduces the
complexity of calculations. Therefore, the matrix [F (k)]
can be used as a fundamental matrix for the two-sided
estimation of capacitance of the line (the second matrix
needed for this purpose can be easily found numerically
from (9)).

Equations (15) and (16) provide the interpretation of the
[F (k,,)] elements. These elements are proportional to the
second mixed derivatives of the transforms of the Green’s
functions, defined for the particular subregions, with respect
to the coordinates y, and y.

In the case of mixed boundary conditions, the manner of
decomposition of the line cross section depends on the
form of the source vector. As an example, consider a
simple mixed boundary problem illustrated in Fig. 4. There

are two problems qualitatively new as compared with those
presented previously. These problems require deriving the
elements R,,(k,), Rys(k,) and, respectively, R, (k,,),
R (k)
The first problem is the D1r1chlet boundary problem for
Poisson’s equation in which one should calculate addition-
ally the transform of the charge density distribution at the

a(’.;’cl+1(km9 Vs ys)

(16)

€+

an

N

ys = hc(l+1)] y=h,

edge (at y = h;). For sources placed respectively at the
interfaces y =h, and y = h,, one can derive, using (12),
the following identities:

d .
51j(km)=€2ﬁ|:—ay$G(km? y’ys=hj) ]ﬁj(km)’
by

y =

izlj(km)

j=2,3. (17)

The second problem is a simple Dirichlet boundary
problem for Laplace’s equation. Using (13), one obtains
the following expressions for the elements R, (k,,) and

31(km)

. 0G (ks y=h,, y,)
le(km)=—€2 an ! H

ys=h1

j=2,3.

(18)

- G(k,,y,y,) in (17) and (18) is the transform of the

Green’s function defined for the subregion bounded by the
coordinates y = h, and y=h,.
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Fig. 4. Superposition of simple Dirichlet boundary problems for the mixed source vector.

In a similar manner, one can analyze any line structure
“sourced” with any source vector. In the presented method,
it is required to derive the transforms of the Green’s
functions for simple subregions of the line cross section. A
fundamental collection of these transforms can be derived
easily and utilized for all the cases of the source vectors to
be used.

C. The Galerkin’s Procedure

To solve matrix equation (6), an unknown vector [§(%,,)]
is expanded as

(19)

where ¢}, i=1,---,K, /=1,---, N, are unknown coeffi-
cients. Substituting (19) into (6) and taking the inner
products of the resultant equations with §j(k,), i=
1,---,K,, I=1,---, N, the following set of coupled linear
equations for ¢; is obtained:

K,
§I(km)= Zc;§;(km)7 I=1,--,N
i=1

[4][c]=[B] (20)
where
[All] [AlN] [Bl]
[4]=| [B]=|
[43n] [Ax] [By]

A= <Rkl(km)§k(km)’ 5/(kwm))
Bi=(F (k). 5i(k,))
and (---,---) means the inner product expressed as

follows: A

[oe]

- L -
(flkn), Bkn)y=5 X f(k,)E(k,)

=1

(21)

where fi (k,,) and g(k,,) are transforms of functions f(x)
and g(x).

An unknown one-column matrix [B] in (20) can be
defined by virtue of Parseval’s identity. Because the con-
ductors located on the auxiliary interfaces have induced or
zero potential, the elements of the matrix [ B] assigned to
these interfaces are equal to zero. So, the matrix [ B] takes
two forms that deperid on the boundary conditions as-
sumed at the main interface. If, for this interface, the
element of the source vector is the transform of the charge
density distribution, one should assume the potential V,, of
the main strip. Then, the elements of matrix [ B] take the
form

.7K

VM'/;;CMPM(X)dx’ I=M) l=17” M (22)

0, [=1,--- N, i+ M

B)=

where p%,(x) is the ith basis function approximating the
charge density distribution on the strip w,,,.

If the main element of the source vector is the transform
of the potential distribution, one should assume the value
Q. of the total charge concentrated on the main strip.
Then

B;Z{QMq)lM(x)lxswaa I=M, i=1,---,Ky (23)
0, I=1,---,N, i#M

where @3,(x)|,e,,,, 1S the potential of the main strip “gen-
erated” by the ith basis function approximating the distri-
bution of the potential at the main interface.

The capacitance of the line can be calculated as a ratio
of the total charge and the potential of the main strip. So,
in the first case, the capacitance of the line equals

1 Kw
Cp=—

(24)
VM =1

cau [ Bh(x) dx
Werr
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where coefficients ¢}, are solutions of the matrix equation
(20) in which the matrix [ B] has been replaced by (22).
In the dual case, the capacitance of the line is

-1
xfW‘M]

where ¢}, are solutions of (20) in which one should sub-
stitute (23) for the matrix [ B].

(25)

Ky
CQ = QM|: Z cj‘,,qu(x)
1=1

D. Two-Sided Estimation on the Line Capacitance
Let us introduce the following functional:

1 X i
F=2W, - Zf o, (x)p,(x) dx (26)
2/ 57—

L2
where 21, =f / @ (x)pp(x)dx is the term which the
L2

stationary value equals twice the energy stored in the
electric field per unit length. As it will be shown, this
functional can be applied for two-sided estimation on the
line capacitance.

Examine first the case when the potential of the main
strip is fixed and equals V,,. Functions p,(x), /=1,-+-, N,
approximating the charge density distributions on every
strip conductor, are to be searched for. Using the Parseval’s
identity for each integral standing below the summation
sign in (26) and, according to (7), replacing each transform
of the potential function by the product of Gk,(km) and
p.(k,,), one obtains the functional F,, as follows:

FV=VMf par(x) dx
Wem

N

1 N
- 5 Z <le(km)5k(km)’ f’l(km»- (27)
k=11=1

Quite similarly, the expression for the functional F,
(assuming the total charge Q,, concentrated on the main
" strip and using (8)) can be derived

FQ = QM(pM(x)Ixsw‘M

_% Y Y AF (k)8 (), §,(k,)y. (28)

k=11=1

In this case, functions ¢,(x), /=1,---, N, approximating
the potential distributions at every interface with conduc-
tors, are to be searched for.

In order to find the extrema of the functionals F, and
F,, the Ritz method can be applied. This means that
functions p,(x) and ¢,(x), /=1,---, N, in (27) and (28)
should be expanded in terms of basis functions expressed
as in (19), and the first derivatives of F;, and F, with
respect to the unknown coefficients should be calculated
and equated to zero. As a result, two sets of linear alge-
braic equations just like (20) are obtained, in which indi-
vidual elements derived separately for the functionals F),
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and Fj, take the forms, respectively,

A= (G (k) B (k). Bl(K,,)) (29)

f Phe(x) dx, I=M

0, I+M

and

Bi_-: {QM(plI\'I(x)Ixcw‘M, l=M
!
0, 1+ M.

Solutions of (20) with (29) and (30) allow for compu-
tation of the extrema values Fy,, F,, of the functionals F;,
and F,. These extrema values are equal approximately to
the energy stored per unit length in the line. Hence, the
capacitance value can be estimated from the following
formulas:

2F,,
Cro=—3 (31)
Vie
Qn
Cp, = . 2
Qe 2FQe (3 )

In order to define the nature of the extrema of function-
als F;, and F,,, one should calculate their second variations
and, according to [11}, utilize the following properties of
the matrices [G(k,,)] and [F(k,)]:

N N .

Z Zle(km)>0’

k=11/=1

N N -

Y Y F,(k,)>0, m=1,2,.. (33)
k=1 1[=1

It can be shown that functionals F), and Fj, reach their
maxima for the correct charge density and potential distri-
butions, respectively. Thus, approximate values F,, and
F,, are smaller than the exact ones. The capacitance value
calculated from (31) is smaller, and calculated from (32) is
larger than the exact one. The average value of capacitance

C=%(CV2+CQ2) (34)

estimates the exact value with an error smaller than

CQe - CVe

§ .= ——=——° 35
€ Coe+Cye (35)

Once the line capacitance C, and C, are evaluated for
nonhomogeneous (layered) and homogeneous (air-loaded)
dielectric media, the characteristic impedance Z, and the
effective dielectric constant €. can be obtained as follows:

(36)

1
Zc = (CECO) iz
Ue

G
€ott = (37)
0 -
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where v, is the light velocity in free vacuum space. Because
of the form of (36), it is obvious that the characteristic
impedance value is bounded from the reverse side rather
than the capacitance value.

Comparing (20), (6), (7), (8), (22), and (23) to (29) and
(30), it can be noticed that using both the Galerkin’s and
Ritz’s methods, the same sets of algebraic equations are
obtained for the cases when the charge density or potential
distributions are approximated at every interface. Thus, the
capacitance values calculated from (24) and (31) and also
from (25) and (32) are equal.

If mixed boundary conditions are assumed at interfaces
with conductors, it is impossible to determine a priori from
which side the estimation of the line capacitance is taking
place. This problem is discussed in the next section.

III. NUMERICAL RESULTS

Modified coupled coplanar lines for which specific com-
putations have been carried out are shown in Fig. 5. This
structure can be useful for microwave integrated circuits
with a view to improve parameters of various passive
components. It is also compatible with the conductor-
backed coplanar line, proposed recently by Shih and Itoh
[12] for monolithic microwave integrated circuits.

In the computations, the unified system of basis func-
tions has been used. This system is based on the Chebyshev
polynomials of the first and second kinds, 7,(X) and
U(X), i=0,1, 2,---, respectively, weighed by an “edge
condition” term V1— X?, where X is the x coordinate
normalized to the half of a distance on which the ap-
proximation is taking place. The system incorporates a
singular behavior of the charge density and electric-field
distributions at the conductor edges and also their nonsym-
metrical distributions.

In Fig. 6, convergence of the upper and lower bounds on
the even- and odd-mode impedances versus a number of
terms of basis functions at both interfaces is shown for two
different structural parameters.

In the first case (Fig. 6(a)), the coplanar line ground
planes had been removed so far away that our computa-
tions might be compared with the results for coupled
suspended microstrip lines with tuning septums presented
by Itoh and Hebert in [3]. Some differences, especially for
the odd-mode, are visible. They result from the fact that
Itoh and Hebert used only symmetrical terms of basis
functions for approximation of the charge density distri-
bution on coupled strips, whereas the physically existing
distributions are nonsymmetrical. In our computations,
both symmetrical and nonsymmetrical terms have been
used; hence, the results are better.

Because of wide slits between the conductors in Fig. 6(a),
the potential distributions are approximated worse than
the charge density distributions, and the lower bound on
the impedance converges to the exact value more slowly
than the upper one. In Fig. 6(b), the results shown for the
dimensions of the structure chosen by this means that the
charge density distributions are approximated worse and
the upper bound converges slowly.

MR TR [1Y! "

$
Fig. 5. Modified coupled coplanar lines.

The numerical results obtained for mixed boundary con-
ditions, i.e., for potential distribution settled at the ad-
ditional ground plane and charge density distributions
settled at the plane of coplanar lines, are depicted in Fig. 6
by dashed lines. Based on these results, it can be concluded
that, in the case of mixed boundary conditions, the side
from which the solution converges to the exact impedance
value is determined by the exactness of approximation of
the physical quantities at the individual interfaces. If at
some interface the charge density distribution is approxi-
mated worse than the potential distributions at the remain-
ing interfaces, the upper bound on impedance is obtained.
And inversely, if at some interface, the approximation of
the potential distribution is the worst, the lower bound on
impedance is calculated. One can ensure the best accuracy
of the computations in the cases if the charge density
distributions are approximated at the planes on which
narrow strips are located and the potential distributions at
the planes where there are wide strips and narrow slits
between them.

The “overlap” effect of some individual solutions can be
observed in Fig. 6. This effect appears when the charge
density or potential distributions are well approximated by
an applied set of basis functions and the errors caused by
the truncation of the series used in (20) dominates. A
number of harmonic terms in (20) has been fixed individu-
ally by the computer program to truncate each series with
the same error, and was not smaller than 100.

In Fig. 7, the characteristic impedances and effective
dielectric constants for even- and odd-modes versus the slit
width in the additional ground plane normalized to the slit
width in the main ground plane are shown. These char-
acteristics have been obtained by calculating the upper and
lower bounds on impedance and applying 2+6 terms of
basis functions when the charge density distributions were
aprroximated, and only 1+3 terms (142 for the odd
mode) for approximation of the potential distributions. It
was estimated that the total error caused by approximation
inaccuracy and by truncation errors does not exceed 0.5
percent. On can observe in Fig. 7 that equalization of the
even- and odd-mode effective dielectric constants can be
achieved. A very important feature of the proposed struc-
ture is that it can permit one to design microwave in-
tegrated components of higher quality (for example, high-
directivity directional couplers).

IV. CONCLUSIONS

We have presented a unified quasi-TEM spectral-domain
method which is able to estimate the lower and upper
bounds on capacitance of multilayer and multiconductor
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Fig. 6. The upper (u.) and lower (1) bound on the even(e)- and odd(o)-
mode impedances and the results for mixed boundary conditions (m.)
versus a number (K, K,) of terms of basis functions at interfaces
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180, d/h=6.0.(b) b/h=15, c/h=125,d/h=10.

printed lines. It has been shown that the approximation of
the charge density distributions at every interface with
conductors leads to the lower bound and approximation of
the potential distributions to the upper bound. If mixed
boundary conditions are assumed, the side of estimation is
determined by exactness of the approximation of the charge
density or potential distributions at the individual inter-
faces. Choosing mixed boundary conditions, one may, in
particular cases, increase the accuracy of the capacitance
calculations.

Numerical results have been given for modified coupled
coplanar lines backed by tuning conductive septums. It has
been shown that equalization of the even- and odd-mode
propagation constants can be achieved in this structure.
The wider range of characteristics for these lines, also
including the dispersion effect, and measured results for
high-directivity couplers built using these lines, will be
published in a separate paper.
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